

Next-Generation Sequencing and Artificial Intelligence in Prenatal Down Syndrome Screening: Legal and Regulatory Implications for Health Insurance, Medical Liability, and Genetic Data Protection

¹Dr Babymol Kurian; ²Bhuvan Unhelkar; ³Dr.Siva Shankar S

¹Post doc Researcher, Muma College of Business, University of South Florida.

¹Associate Professor, Department of Information Technology, KCG College of Technology, Chennai, INDIA

²Professor, Muma College of Business, University of South Florida, 8350 N. Tamiami Trail Sarasota, Florida. USA.

³Professor & Head IPR, Department of Computer Science and Engineering, KG Reddy College of Engineering and Technology, RR district, Telangana, INDIA – 501504

Email: ¹babymolkurian@gmail.com; ²bunhelkar@usf.edu; ³drsivashankars@gmail.com

ORCID: ¹<https://orcid.org/0000-0002-8812-5734>

Abstract

The integration of Next-Generation Sequencing (NGS) and AI have made Down syndrome prenatal screening earlier, more accurate, and non-invasive. These technologies offer better therapeutic outcomes and less diagnostic uncertainty, but widespread implementation poses difficult legal, ethical, and insurance issues. This research critically investigates how AI-assisted NGS-based prenatal screening affects health insurance coverage, medical and institutional liability, and genetic data protection. Predictive genomic data challenges risk pooling and non-discrimination in insurance legislation, especially when insurers employ prenatal genetic information in underwriting or coverage decisions. The study also examines professional liability, including diagnostic errors caused by algorithmic bias, system failure, or poor human oversight, and AI-driven genomic tool-based clinician and healthcare provider standards of care. The study also discusses GDPR and similar national laws' effects on genetic data privacy, informed consent, data ownership, and cross-border data transfer. This comparative and interdisciplinary study shows that AI-enabled prenatal genetic screening requires strong regulatory safeguards, explicit liability allocation mechanisms, and insurance changes to assure ethical, lawful, and equitable use. The report closes with policy recommendations to balance technological innovation, patient rights, legal accountability, and data security.

Keywords: Artificial Intelligence; Next-Generation Sequencing; Prenatal Screening; Down Syndrome; Health Insurance Law; Medical Liability.

1. Introduction

The Advent of Next-Generation Sequencing technology has dramatically changed how people screen for Down syndrome prenatally. When used with artificial intelligence, NGS allows healthcare providers to detect chromosomal abnormalities in a fetus earlier, with greater accuracy, and non-invasively than ever before (Bedei et al., 2021). Additionally, traditional screening methods based on biochemical indicators and maternal age are no longer the only ways to evaluate risk; genomic analysis using AI can enhance the clinical precision of these traditional methods and introduce additional legal, ethical, and regulatory concerns (Minear et al., 2015). While AI-enabled NGS provides substantial potential for personalized reproductive healthcare,

342

Citation: Kurian, B.; Shankar, S. & Nagarajan. (2026). Quantum Enhanced Machine Learning Model for the Diagnosis of Alzheimer's Disease. *International Insurance Law Review*, 34 (S1), 342-354.

its clinical use presents additional complexities such as insurance risk, medical liability, and the management of sensitive genetic material (Thorsen et al., 2025). Consequently, the existing regulatory and legal frameworks must be re-evaluated to eliminate discrimination, identify responsibilities, and maintain patient privacy in regard to predictive genomics. For a variety of uses, especially in the medical field, AI has become a more practical and dependable instrument. Prenatal diagnosis constitutes one of the most sensitive and significant areas of modern medicine, as it allows for the early detection of chromosomal, genetic, and structural alterations in the fetus (Chiu & Lo, 2021). Advances in next-generation sequencing and other molecular techniques have exponentially increased the quantity and complexity of the data obtained, posing a challenge for its analysis and clinical interpretation (Gekas et al., 2016). In this context, AI is emerging as a fundamental tool for optimizing diagnostic processes, reducing human error, and providing a more precise and personalized approach to large volumes of genetic information (Estiva et al., 2019). This research will evaluate critically the multidimensional implications of the use of AI in prenatal screening, with particular emphasis on the following areas: healthcare insurance law; standards for clinical negligence; and protections around genetic data.

1.1 Background of Prenatal Genetic Screening

Prenatal screening has long been a cornerstone of modern obstetrical care, aiming to identify pregnancies at an increased risk for fetal anomalies. Traditional methods, such as maternal serum screening and ultrasound, have played a crucial role in this endeavor. However, these approaches often suffer from limitations, including relatively high false-positive rates, which can lead to unnecessary anxiety for expectant parents and the need for invasive diagnostic procedures like amniocentesis or chorionic villus sampling, both carrying a small risk of miscarriage (CarusoPhD, 2022). Prenatal genetic testing has changed significantly through the years, beginning with biochemistry and ultrasound in the 1970 and 1980s which calculated the risk of neural tube defects and some chromosomes, like trisomy 21 (Down syndrome), by looking for certain substances in the mother's blood and measuring the amount of fluid under the skin of the fetus (Gordon et al., 2025). While these methods did improve upon previous screening techniques by offering increased numbers of women who may be identified as at risk for these defects, their moderate sensitivity, increased odds for false positive results, and increasing reliance on invasive procedures to confirm a diagnosis resulted in significant limitations to these methods (Cuckle & Maymon, 2016). The discovery ofcffDNA in maternal blood led to a move toward non-invasive prenatal testing. Non-invasive prenatal testing (NIPT) utilizes high-throughput sequencing and bioinformatic data to identify chromosome anomalies in the fetus, and occur during the first trimester (Benn & Cuckle, 2023). NIPT has vastly decreased reliance on invasive procedures to make a diagnosis by providing women with highly sensitive results when screening for trisomy 21, 18, and 13. NIPT is also used in conjunction with NGS and new bioinformatics technologies to further expand its clinical application (Garg et al., 2025).

1.2 Emergence of Ai-Integrated NGS Technologies

Integrating Artificial Intelligence into NGS technologies has begun to revolutionize genomics by automating key processes; detecting patterns in experimental data; and interpreting high-throughput sequencing data that traditional bioinformatics have difficulty handling (Athanasopoulou, et al., 2025). Machine learning and deep learning approaches are improving the

quality and scale of critical NGS workflows, including variant calling, functional annotation, and multi-omic integration, thereby improving quality and scale of precision and genomic information used in research, clinical decision support, and diagnostic services (Narad, et al. 2024). In clinical settings, AI-NGS systems have streamlined the detection of genetic variants and biological signatures; while reducing time spent manually interpreting results and allowing real-time decision making (Doig et al., 2025). The AI integration within NGS presents many challenges to implementation; such as verifying data quality; algorithm disparities; and establishing the standards and regulatory frameworks that would enable consistent application of AI-NGS systems.

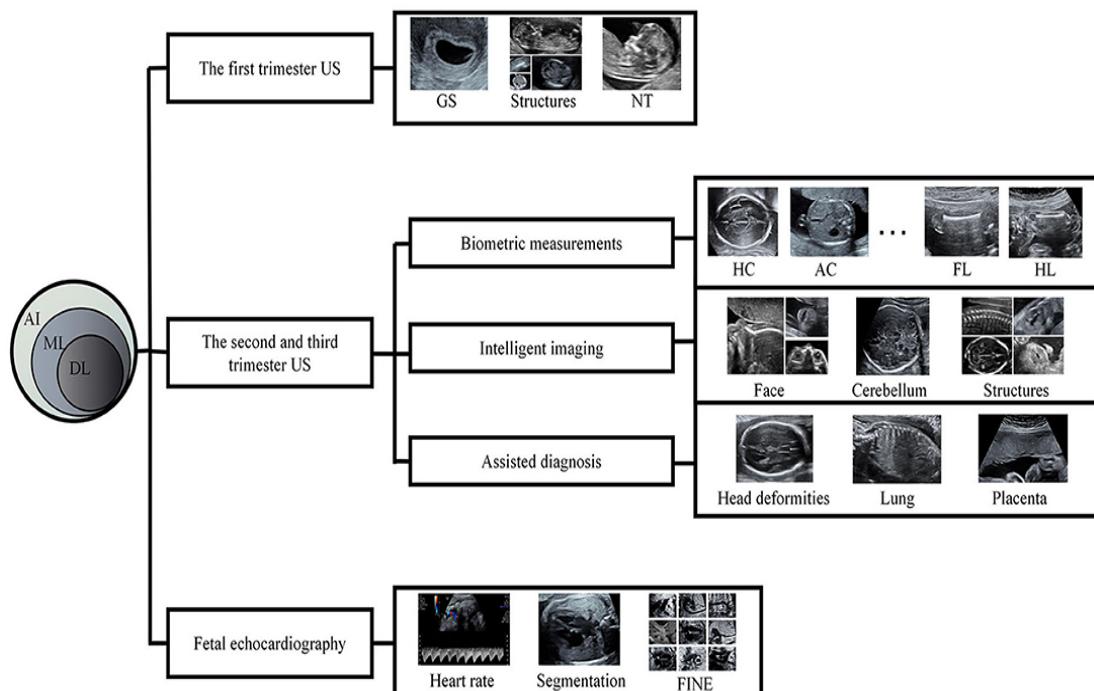


Figure 1. AI-Enabled Prenatal Imaging and Screening Workflow

2. Review of literature

(Bartusik-Aebisher et al., 2026) investigated AI is swiftly revolutionizing medical diagnostics by facilitating early, precise, and data-informed clinical decision-making. The paper offers a summary of the application of machine learning, deep learning, and novel multimodal foundation models in diagnostic processes encompassing imaging, pathology, molecular analysis, physiological monitoring, and electronic health record-integrated decision-support systems. They have examined the fundamental computational principles of supervised, unsupervised, and reinforcement learning, highlighting the significance of data curation, validation metrics, interpretability techniques, and feature engineering. AI applications have demonstrated its capability to identify anomalies and combine characteristics from multi-omics and imaging, resulting in enhancements in prognostic modeling. Future breakthroughs in federated learning, generative AI, and low-resource diagnostics will facilitate the development of adaptive and universally accessible AI-assisted diagnostics.

(Andonotopo et al., 2026) conducted accelerated advancements in AI are transforming prenatal genetic medicine; yet, the extent, efficacy, and clinical ramifications are reported inconsistently. A comprehensive analysis investigates the application of AI in cfDNA screening, identification of

monogenic and copy-number variations, and exome/genome-based fetal diagnosis. Comprehensive searches of principal databases and registries were conducted in accordance with PRISMA 2020 recommendations, yielding 1,284 records. The findings encompassed machine-learning models for cfDNA fragmentomics, deep-learning architectures for monogenic variant inference, automated NIPT procedures, and AI-assisted interpretation of fetal exome and genome sequencing. AI-enhanced prenatal genomics seems to be transitioning from proof-of-concept to clinical use. These findings endorse the incorporation of AI-genomics into prenatal treatment.

(Marechal et al., 2026) Advancements in artificial intelligence and multi-omic analysis are converting fetal medicine from a diagnostic field into a predictive one. This paper analyzes the nascent ethical and legal dilemmas in predictive fetal medicine, emphasizing the shift from maternal permission to the child's prospective right to access their prenatal data. Utilizing the perspectives of professional ethics and comparative jurisprudence, we suggest a paradigm for prenatal data stewardship that transitions from fixed concepts of data ownership to a model of collective accountability throughout time. Ultimately, harmonizing predictive fetal medicine with ethical and legal consistency necessitates collaborative efforts among doctors, ethicists, jurists, politicians, and industry stakeholders.

(Shaikh et al., 2025) investigated down syndrome is among the most common chromosomal anomalies impacting world healthcare. Recent advancements in artificial intelligence and machine learning have improved diagnostic accuracy in Down syndrome. To guarantee transparency and rigor, the authors adhered to the preferred reporting items for systematic reviews and meta-analyses criteria. They retrieved 1175 items from prominent academic databases. A final selection of 25 articles was made by using inclusion and exclusion criteria. The results indicated substantial progress in AI-driven diagnostic systems across various data types. The modalities, comprising facial photos, ultrasound scans, and genetic data, exhibited significant potential for early identification of Down syndrome. Notwithstanding these developments, this research delineated the constraints of AI methodologies. Limited and unbalanced datasets reduce the generalizability of AI models.

(William et al., 2025) To examine the primary advancements in the utilization of artificial intelligence (AI) for prenatal genetic data processing, along with its therapeutic and ethical ramifications. Methods: A narrative evaluation of contemporary scientific literature was performed in worldwide databases, encompassing studies on machine learning and deep learning utilized in prenatal diagnostics. Findings: AI has demonstrated enhancements in diagnostic precision for identifying chromosomal anomalies, refining the analysis of non-invasive genomic assessments, and facilitating tailored medicine in prenatal care. However, constraints remain concerning clinical validation, algorithmic bias, and bioethical regulation. Conclusions: Artificial intelligence constitutes a promising instrument in prenatal genetics; nonetheless, its deployment necessitates a robust regulatory framework, data protection, and interdisciplinary training.

(Lee et al., 2025) Examined genetic screening, which assesses an individual's genetic information to ascertain disease vulnerability and provide personalized health recommendations. This study clarifies genetic screening, including its definition, principles, historical background, and common types, including prenatal, neonatal, adult disease risk, cancer, and pharmacogenetic screening. The article delineates limits, including ambiguities in result interpretation, psychological and ethical dilemmas, along with issues pertaining to privacy and

bias. It provides direction on choosing suitable screening techniques, consulting with experts, recognizing credible organizations, and understanding the aims and limitations of screening. The essay aims to augment public awareness and advocate for the utilization of genetic screening technology for disease prevention and health preservation.

(Coghlan & Years, 2024) explored the research analyzes the ethical implications of integrating new AI technologies into prenatal and pediatric genomic medicine. The application of genomic AI in early life contexts has been largely overlooked in the ethical literature. We concentrate on three contexts: (1) prenatal genomic sequencing to identify potential fetal anomalies, (2) expedited genomic sequencing for critically ill pediatric patients, and (3) reanalysis of genomic data acquired from children for diagnostic objectives. The study delineates and examines numerous ethical concerns with the potential implementation of genomic AI in these contexts, particularly in relation to the principles of beneficence, nonmaleficence, respect for autonomy, justice, transparency, accountability, privacy, and trust. The assessment will guide the ethically responsible implementation of genomic AI in early human development.

(Suura, 2024) Asserted Progress in biotechnology and genetics facilitates greater access to knowledge concerning individuals' genetic predisposition to diseases that impact them and their families. Genetic risks facilitate the formulation of preventive health plans and interventions using many tools, including predictive testing and genetic counseling. Artificial Intelligence and its neural networks have been applied across various domains, demonstrating remarkable results. This effort aims to examine the deployment of neural networks in predicting genetic disease risks and to evaluate these technologies' potential in improving preventive health practices. Efforts should focus on formulating strategies that assist genetic counselors and healthcare teams in utilizing AI tools and neural networks for population-level predictions, as well as implementing preventive health measures aimed at reducing transmissible risks and enhancing family health conditions.

(Recharla et al, 2023) Early detection necessitates minimizing the duration required to identify and evaluate the causes of emerging human diseases. Recent technological breakthroughs in next-generation sequencing and human genome annotations offer the potential to utilize this knowledge for developing novel methods of evaluating individuals for illness presence and progression. This study examines a vision for next-generation technologies and how the difficulty of early disease detection drives research focused on creating new sensor platforms. These technologies have the potential to transform early detection diagnostic procedures and significantly enhance reaction times. Our methodology creating sophisticated sensors and swiftly correlating them with genomic annotations to guide treatment choices will utilize a virus as a case study due to its complexity in biomarker identification applicable to medication design and diagnostic research.

3. Research Methodology

3.1 Research Design

This research incorporates a qualitative, interdisciplinary research design merging legal doctrine analysis and health technology and policy assessment to introspect the implication of AI-powered Next-Generation Sequencing in prenatal screening of Down syndrome. An evaluation is conducted based on a descriptive-analytical methodology to determine the intersection of emerging genomic technologies with health insurance regulations, medical liability systems, and genetic data

protection regulations. The study incorporates the comparative legal analysis with the thematic review of academic literature and regulatory tools to determine the systemic gaps and accountability issues. This design allows organized review of technological innovation and legal obligation changes and patient rights.

3.2 Interdisciplinary Legal-Technological Research Framework

This interdisciplinary study uses legal and technological tools to analyse how AI-enabled NGS and genomic data acquisition, algorithmic risk prediction detection, and clinical interpretation will affect the expanding legal governance framework for prenatal Down syndrome screening. The study will also integrate these technical genomics dimensions into health insurance regulations, medical liability allocation, and genetic data protection through legal analysis, allowing the mapping out of the entire screening process from data acquisition to clinical decision making to regulatory agency oversight and identifying the critical intersections between algorithmic uncertainty, profession. This interdisciplinary framework will also enable comparative assessments across jurisdictions by evaluating regulatory consistency, liability allocation mechanisms for medical providers, and genetic disruption protection by embedding foundational ethical principles (e.g., transparency, informed consent, accountability, and non-discrimination) as cross-cutting elements for analysis of fairness and legitimacy of AI diagnostic practices.

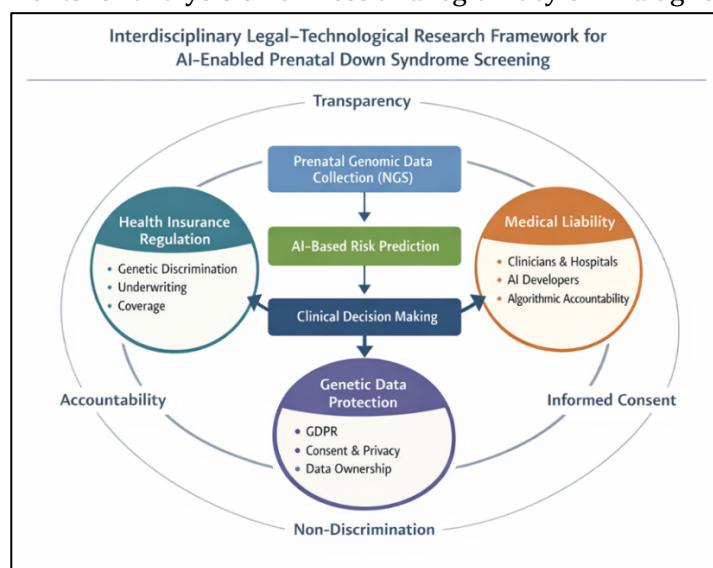


Figure 2. Interdisciplinary Framework for AI-Based Prenatal Down Syndrome Screening.

3.3 Health Insurance Law and Risk Assessment in AI-Based Prenatal Down Syndrome

This section analyzes how using AI-assisted prenatal genomics for risk assessment in health insurance will have legal ramifications. It examines whether genetic predictive information obtained from next generation sequencing will impact underwriting, eligibility for coverage and determining premiums resulting in concerns over genetic discrimination and disparities in accessing care. Traditional insurance models depend on pooled risk while using AI-based individualized stratification would create significant challenges for fairness and social solidarity. The compatibility of these practices with the existing laws on non-discrimination and consumer protection is assessed along with an emphasis on how the law does not address the regulatory void left between expectant parents (both mothers and fathers) who receive an exclusion from an

insurance product due to their use of predictive prenatal genomic data in making an exclusion decision. Using comparative legal analysis, this research highlights emergent tensions created by the lack of legal protections to prohibit the misuse of prenatal genomic data in conjunction with technological advances.

3.4 Medical Liability and Accountability in AI-Enabled Prenatal Screening

This part examines medical and institutional liability that will emerge in case of the implementation of artificial intelligence in prenatal Down syndrome screening workflows. The paper analyzes the agency issue between clinicians, healthcare organizations, and AI system developers in the event of diagnostic errors related to algorithmic bias, data quality constraints, or malfunction. The specific focus is on the current standards of care development and the responsibility of the clinician to establish an informed control over the AI-generated outcomes. The discussion also examines the conflicts between the old model of medical negligence and the new product liability models that can be applied to the clinical tools operated by algorithms. This study demonstrates the existence of accountability gaps and the necessity of liability allocation mechanisms to protect patients and safeguard professionals in AI-assisted prenatal diagnostics by assessing the current legal principles and regulatory guidelines.

3.5 Genetic Data Governance and Privacy Risks in AI-Based Prenatal Down Syndrome

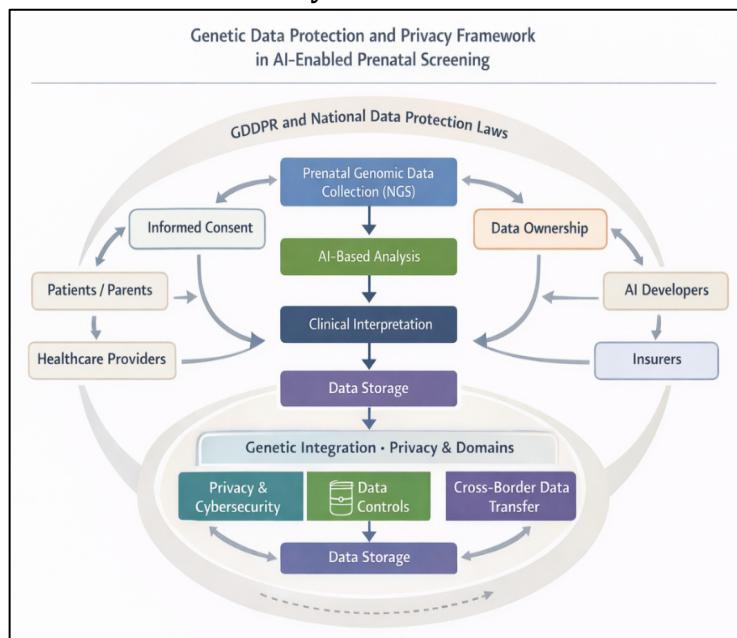


Figure 3. Conceptual Framework of Genetic Data Privacy in AI-Based Prenatal Screening

Genetic data governance in an AI-based Down syndrome prenatal screening test involves legal and institutional frameworks for sensitive data collection, processing, sharing, and storage. These governance frameworks address informed consent, data ownership, algorithmic transparency, and protection from unauthorized access and secondary use because fetal genetic data is predictive and has lifelong implications. AI-based prenatal screening customers, healthcare providers, algorithm developers, and insurers are involved in GG, which complicates accountability and raises privacy breaches and prejudice. The GDPR, national data protection regulations, and others provide baseline protections, but they fail to solve transparency and facial

opacity issues connected to AI, cross-border data transfers, and downstream insurance access. To ensure patient autonomy and confidence in AI-based prenatal screening, a comprehensive set of governance procedures that integrate legal compliance, technical safeguards, and ethical monitoring are necessary. The genetic data governance and privacy architecture in AI-enabled prenatal screening is shown in Figure 3, from prenatal genomic data collection (NGS) to AI-based analysis, clinical interpretation, and data storage.

4. Results & Discussion

4.1 Regulatory Gaps in AI-Enabled Prenatal Screening

The analysis concludes that there are significant regulatory deficiencies in regulating AI based genome mapping used to determine a prenatal risk for certain conditions; in particular, the study focuses on the regulatory interplay between health insurance; the clinical governance of AI-NGS, and data protection. The use of AI-based NGS in predicting risk earlier in pregnancy does create new problems within the current legal framework with respect to using prenatal genetic data to underwrite, and determine coverage for, health insurance and engenders opportunities for genetic discrimination and unequal access to health care. In addition to these problems, the current regulatory structure fails to provide for algorithmic transparency which impedes a patient's opportunity for a thorough understanding and monitoring of the outcomes produced by AI. The findings indicate a critical need for harmonized regulatory safeguards that protect the use of, and access to, prenatal genetic data.

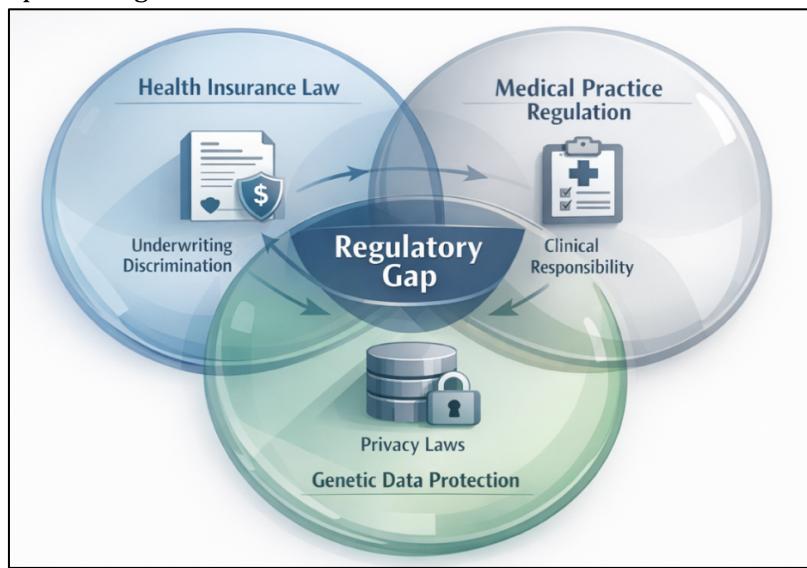


Figure 4. Regulatory Gaps in AI-Enabled Prenatal Screening

4.2 Neonatal Outcome Distribution by Prenatal Diagnosis Status

This sub-topic discusses the patterns of neonatal outcomes with or without prenatal diagnosis. These findings show that the distribution of the mortality categories is noticeable between the two groups, although it is observed that the prenatally diagnosed group of neonates has a relatively better outcome profile than the group that was not prenatally diagnosed. The early diagnosis can be seen as helping to prepare clinically better, deliver specific interventions, and manage the postnatal care optimally. The results of this study support the value of prenatal screening based on AI in better risk stratification and neonatal care planning.

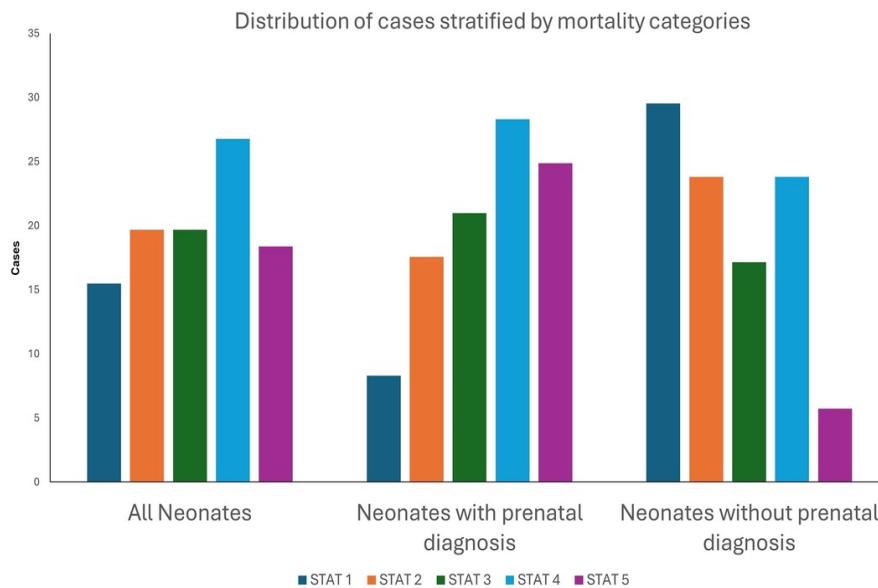


Figure 5. Comparative Neonatal Mortality Based on Prenatal Diagnosis

4.3 Medical Liability and Accountability Outcomes

In AI-driven pre-natal screening, the liability structure is likely to be fragmented and involve the clinicians, the healthcare institution and the AI software developers. Current medical negligence law assumes that there is a human being making the final diagnostic decision, but as AI systems become increasingly involved in diagnostic decision-making, this will create uncertainty regarding who can be found liable for medical negligence. Providing a legally binding definition of a reasonable standard of care for clinicians will allow the public to seek redress from all parties involved in the provision of prenatal screening services when an error has occurred due to AI-assisted diagnosis. The results indicate the need for the development of shared liability frameworks and mandatory human oversight in AI-assisted prenatal screening.

4.4 Genetic Data Governance and Privacy Findings

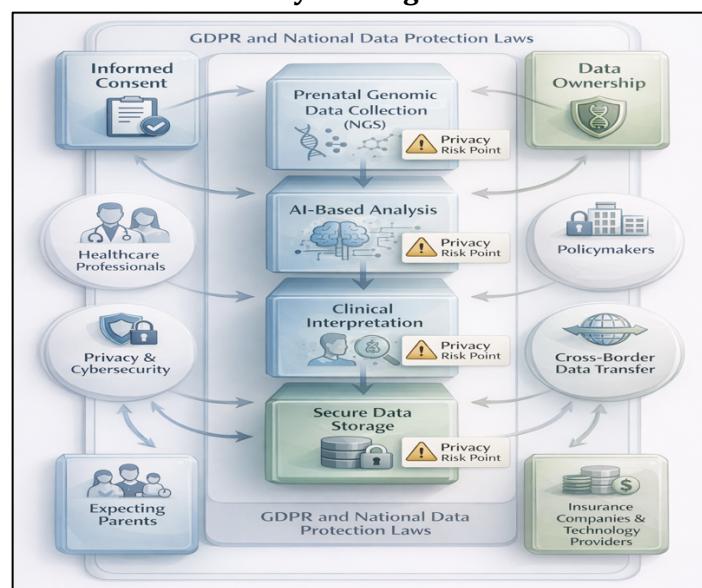


Figure 6. Genetic Life Cycle and Privacy Risk in AI-Enabled prenatal Screening

The genetic data governance can become a pressing issue because the genetic information of fetuses has lifelong consequences that are delicate and sensitive. Despite the basic protections offered by GDPR and national data protection regulations, they do not effectively tackle the risks of AI portability, secondary data application and foreign data transfer. The practice of informed consent is mainly procedural and does not provide much clarity regarding the ownership of the data and its subsequent use. Accountability is further complicated by the fact that different stakeholders are involved. These findings indicate that there is a necessity of holistic models of governance that integrates both legal compliance, cybersecurity and ethical stewardship.

4.5 Integrated Legal-Ethical Implications of AI-NGS Adoption

Insurance regulation, medical liability and genetic data privacy are all intertwined within prenatal screening with the use of an AI algorithm. The way clinicians are influenced by algorithmic risk prediction impacts not only the decisions they make for patients, but also how insurers operate as well as how data is governed. There are multiple consequences from these interconnected areas that have legal and ethical implications. Transparency, informed consent, non-discrimination and accountability are not well represented within existing frameworks. The result is a loss of patient trust and clinician confidence. An integrated approach to governing these areas is needed that includes participation from multiple disciplines.

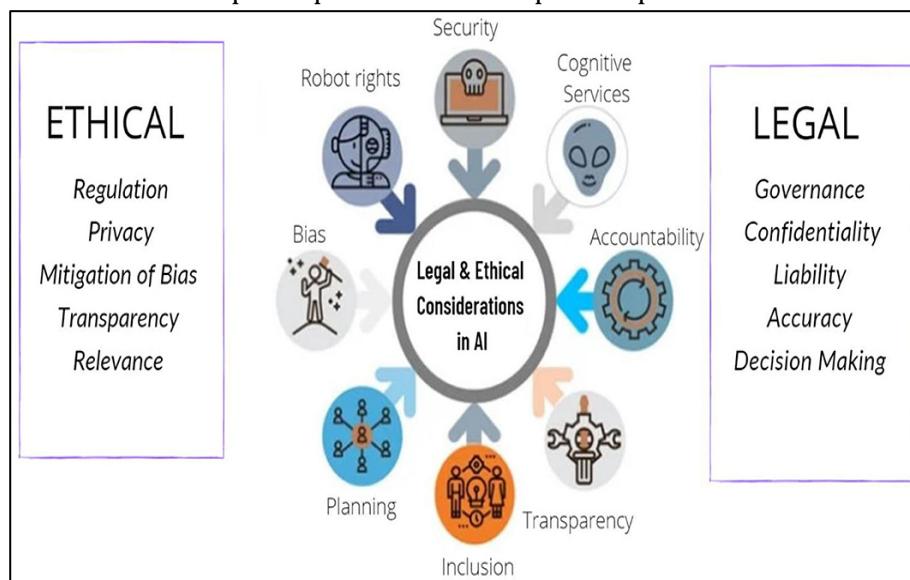


Figure 7. Integrated Legal-Ethical Impact Framework for AI Prenatal Screening.

4.6 Policy and Regulatory Implications for Responsible AI-NGS Deployment

The proposals highlight the incoherence of current norms and regulations on the safe use of AI-enabled NGS for prenatal Down syndrome screening. A clear and consistent framework that protects against genetic discrimination, allocates liability, and enforces transparency, explainability, and human oversight in clinicians' AI decision-making is needed to govern these technologies. To fill accountability gaps, healthcare laws, insurance regulation, AI governance, and genetic data protection must be integrated and harmonised. These adjustments are important to give healthcare practitioners assurance by balancing technology advances with patient rights and maintaining public trust in AI-based prenatal screening systems.

4.7 Discussion

This Study emphasizes that AI combined with next-generation sequencing can improve the prenatal risk assessment early in life and, at the same time, become a complex issue in terms of legal, ethical, and governance issues. The results show that the inadequacy of regulatory provisions, fractured liability frameworks, and lack of protection of genetic data could restrict the safe clinical use of such technologies. To strike the right balance between technological innovation and patient rights, transparency and accountability, an interdisciplinary governance approach is thus necessary. Altogether, the responsible AI-based prenatal screening implementation will demand the alignment of healthcare, insurance, and data protection systems.

5. Conclusion and Future Work

This study examined the interdisciplinary implications of integrating artificial intelligence with next-generation sequencing in prenatal Down syndrome screening, focusing on health insurance regulation, medical liability, and genetic data governance. The findings indicate that while AI-enabled genomics enhances early risk detection and clinical preparedness, existing legal frameworks remain fragmented and insufficient to address genetic discrimination, accountability gaps, and data privacy risks. The research highlights the necessity of harmonized regulatory safeguards, shared liability models, and strengthened genetic data stewardship to ensure ethical and equitable deployment. Ultimately, responsible governance of AI-NGS technologies is essential to balance innovation with patient rights, transparency, and public trust.

5.1 Future Work

Further studies also need to include empirical clinical evidence to objectively assess the effect of AI-assisted prenatal screening on the health outcomes and health equity of the infants. The comparative jurisdictional studies are also necessary to determine the success of the new regulatory strategies in various legal systems. Also, more research is needed on glorifiable AI frameworks and consent systems that improve patient insight and AI transparency. It will be essential to incorporate the stakeholder views, which will include the clinicians, parents, insurers, and AI developers, to come up with effective governance policies to implement them in reality.

References

Bedei, I., Wolter, A., Weber, A., Signore, F., & Axt-Fliedner, R. (2021). Chances and challenges of new genetic screening technologies (NIPT) in prenatal medicine from a clinical perspective: a narrative review. *Genes*, 12(4), 501.

Minear, M. A., Alessi, S., Allyse, M., Michie, M., & Chandrasekharan, S. (2015). Noninvasive prenatal genetic testing: current and emerging ethical, legal, and social issues. *Annual review of genomics and human genetics*, 16(1), 369-398.

Thorsen, M. M., Mahoney, R. C., Parobek, C., Jiménez Muñoz, P. C., Nunez, S., Lewkowitz, A. K., ... & Russo, M. L. (2025). A Qualitative Study of Pregnant Patient Perspectives on Genetic Privacy of Cell-Free DNA and Optimal Design of a Prenatal Genetics Video-Based Educational Intervention. *Prenatal Diagnosis*, 45(4), 491-499.

Chiu, R. W., & Lo, Y. D. (2021). Cell-free fetal DNA coming in all sizes and shapes. *Prenatal Diagnosis*, 41(10), 1193-1201.

Gekas, J., Langlois, S., Ravitsky, V., Audibert, F., van den Berg, D. G., Haidar, H., & Rousseau, F. (2016). Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues. *The application of clinical genetics*, 15-26.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. *Nature medicine*, 25(1), 24-29.

CarusoPhD, "Evolution of non-invasive prenatal testing (NIPT)," Diagnostic Precision, Dec. 20, 2022.

Gordon, S., Umandap, C., Maines, J., & Langaker, M. D. (2025). Prenatal Genetic Screening. In *StatPearls [Internet]*. StatPearls Publishing.

Cuckle, H., & Maymon, R. (2016). *Development of prenatal screening — A historical overview*. Seminars in Perinatology.

Benn, P., & Cuckle, H. (2023). *Overview of Noninvasive Prenatal Testing (NIPT) for the Detection of Fetal Chromosome Abnormalities*. Clinical Obstetrics and Gynecology.

Garg, R. K., Kumar, Y., Niwas, R., & Singh, J. (2025). Non-Invasive Prenatal Testing (NIPT): A Paradigm Shift in Prenatal Care. *International Journal of Preventive Medicine*, 16, 86.

Athanasopoulou, K., Michalopoulou, V. I., Scorilas, A., & Adamopoulos, P. G. (2025). Integrating Artificial Intelligence in Next-Generation Sequencing: Advances, Challenges, and Future Directions. *Current Issues in Molecular Biology*, 47(6), 470.

Narad, P., Sengupta, A., Gupta, P., Priyadarshini, P., Kulshrestha, S., & Chaurasia, A. (2022). Integrating artificial intelligence techniques for analysis of next-generation sequencing data.

Doig, K. D., Perera, R., Kankanige, Y., Fellowes, A., Li, J., Lupat, R., ... & Fox, S. B. (2025). Using artificial intelligence (AI) to model clinical variant reporting for next generation sequencing (NGS) oncology assays. *BioData Mining*, 18(1), 74.

Bartusik-Aebisher, D., Justin Raj, D. R., & Aebisher, D. (2026). Artificial Intelligence in Medical Diagnostics: Foundations, Clinical Applications, and Future Directions. *Applied Sciences* (2076-3417), 16(2).

Andonotopo, W., Bachnas, M. A., Prabowo, W., Yuliantara, E. E., & Others (2026). *Artificial Intelligence-Enhanced Prenatal Genomic Screening and Diagnosis: A Systematic Review of cfDNA-and Sequencing-Based Methods, Clinical Utility, Ethical Challenges, and Future Directions*. Jan 18, 2026.

Marechal, Y. Predictive Fetal Medicine and the Ownership of Prenatal Data: Legal, Ethical, and Professional Challenges. *Frontiers in Digital Health*, 8, 1758249.

Shaikh, M. A., Al-Rawashdeh, H. S., & Sait, A. R. W. (2025). A Review of Artificial Intelligence-Based Down Syndrome Detection Techniques. *Life*, 15(3), 390.

William, C., MD, I. M. T. R., Stefano, K., & Vargas-Silva, M. D. (2025). Artificial intelligence in prenatal genetic: Current advances and future directions. *Perinatal Journal*, 33(1), 781-786.

Lee, C. L., Chuang, C. K., Chiu, H. C., Chang, Y. H., Tu, Y. R., Lo, Y. T., ... & Lin, S. P. (2025). Understanding Genetic Screening: Harnessing Health Information to Prevent Disease Risks. *International Journal of Medical Sciences*, 22(4), 903.

Coghlan, S., Gyngell, C., & Vears, D. F. (2024). Ethics of artificial intelligence in prenatal and pediatric genomic medicine. *Journal of Community Genetics*, 15(1), 13-24.

Suura, S. R. (2024). The role of neural networks in predicting genetic risks and enhancing preventive health strategies. *European Advanced Journal for Emerging Technologies (EAJET)*-p-ISSN 3050-9734 en e-ISSN 3050-9742, 2(1).

Recharla, M., Nuka, S. T., Chakilam, C., Chava, K., & Suura, S. R. (2023). Next-Generation Technologies for Early Disease Detection and Treatment: Harnessing Intelligent Systems and Genetic Innovations for Improved Patient Outcomes. *Journal for ReAttach Therapy and Developmental Diversities*, 6, 1921-1937.